An historical analysis of the changes in pasture production and growing season in three dairy regions of South East Australia

Richard Rawnsley¹, Brendan Cullen², Karen Christie¹ and Richard Eckard²

¹Tasmanian Institute of Agricultural Research, University of Tasmania, Burnie, Tasmania 7320, Australia
²Melbourne School of Land and Environment, University of Melbourne, Victoria 3010, Australia
Biophysical Modelling approach

- SE Vic, SW Vic and Tas dairy regions are predominantly pasture based.
- Changes in the “wetness”, “dryness” and “length of growing season” will be key drivers for adaptation.
- Why?
 - Strong influence on key management decision such as:
 - Stocking rate and calving date
 - Wintering off and implementation of infrastructure such as feedpads, herd homes etc.
 - Nitrogen usage and conservation practices
 - Drying off times and herd culling
 - Planting of forage crops, irrigation start up, scheduling and requirements
Biophysical Modelling approach

• What have we done?
 – Defined growing season
 • 14 day average growth rate > “break even” point.
 – Eg. At 2.0 cows/ha and 15 kg DMI/day = 30 kg DM/ha.day.
 – Defined wetness
 • Soil moisture > field capacity
 – Defined dryness
 • Readily Available Water (0.5PAW) removed
 – Modelled with biophysical pasture simulation model DairyMod (Johnson et al. 2008).

Are the models accurate?

Figure 1. Measured and modelled monthly mean daily net herbage accumulation rates (kg DM/ha.day), including measured variability (grey shaded). Adapted from Cullen et al. 2008.

Figure 2 The simulated commencement date and duration of the growing period, for years 1960/61 to 2008/09 at Elliott (a), Ellinbank (b) and Terang (c).
Figure 3 The simulated number of days in years, expressed as yearly percentiles that the 14 day mean pasture growth rate > 30 kg DM/ha, for years 1960/61 to 2008/09 at Elliott (a), Ellinbank (b) and Terang (c)
Figure 4 The Standardised Precipitation Index (SPI) for cumulative 12 month precipitation (1900-2010) for Ellinbank
Figure 5 The Standardised Precipitation Index (SPI) for cumulative 12 month precipitation (1900-2010) and the corresponding Z value for simulated annual pasture production for Ellinbank.
Figure 6 The 6 month Standardised Precipitation Index (SPI) for April to September (RED) and October to March (BLUE) for Ellinbank
Figure 7 The regression between simulated annual pasture yield (kg DM/ha.year) against the 6 month Standardised Precipitation Index (SPI) for April to September (RED) and October to March (BLUE) for Ellinbank.
Summary

- In recent years the number of days that feed supply > feed demand has declined at all three sites.
- There is sufficient variation in historical records to examine adaptation options.
- There is an urgent need for whole-of-farm system analysis to accurately simulate production, profitability, and risk.
- There are potentially three levels of adaptation that need to be explored:
 - Adapting within the current feed base.
 - Modifying the feed base by adopting different forage options.
 - Adapting to a new farming system.
This project is supported by funding from Dairy Australia, Meat and Livestock Australia and the Australian Government Department of Agriculture, Fisheries and Forestry under its Australia’s Farming Future Climate Change Research Program